GUIA DOCENTE DE LA ASIGNATURA Óptica Aplicada a la Industria Química

Curso 2019-2020

(Fecha última actualización: 15/05/2019) (Fecha de aprobación en Consejo de Departamento: 23/05/2019)

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
Complementos de Formación	Óptica Aplicada a la Industria Química	3° ó 4°	6° u 8°	6	Optativa
PROFESORES ⁽¹⁾			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS		
 Enrique F. Hita Villaverde. Luis M. Jiménez del Barco Jaldo. 			Dpto. Óptica, 1ª planta Edificio Mecenas, Facultad de Ciencias. Despachos nº 115 y 116. Correo electrónico: ehita@ugr.es y ljimenez@ugr.es		
			HORARIO DE TUTORÍAS Y/O ENLACE A LA PÁGINA WEB DONDE PUEDAN CONSULTARSE LOS HORARIOS DE TUTORÍAS ⁽¹⁾		
			http://optica.ugr.es/static/InformacionAcade micaDepartamentos/*/docentes		
GRADO EN EL QUE SE IMPARTE			OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR		
Grado en Ingeniería Química			Grado en Química		

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Tener cursadas las asignaturas básicas correspondientes al grado en Ingeniería Química y, en su caso, en Química) Tener conocimientos básicos sobre:

- Óptica
- Física y Matemáticas

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Fuentes de Luz. Láseres. Instrumentos Ópticos de aplicación en Ingeniería Química. Técnicas de Polarimetría, Interferometría y de Difracción de aplicación en Ingeniería Química. Colorimetría, Radiometría y Fotometría.

Consulte posible actualización en Acceso Identificado > Aplicaciones > Ordenación Docente
 Esta guía docente debe ser cumplimentada siguiendo la "Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada" (http://secretariageneral.ugr.es/pages/normativa/fichasugr/ncg7121/!)

COMPETENCIAS GENERALES Y ESPECÍFICAS

- GENERALES:
- INSTRUMENTALES
- C13.- Comunicación oral y escrita en la lengua propia.
- C15.- Resolución de Problemas.
- PERSONALES
- CP4.- Razonamiento Crítico.
- SISTÉMICAS
- CS1.- Capacidad de aplicar los conocimientos en la práctica.
- CS4.- Habilidad para trabajar de forma autónoma.
- ESPECÍFICAS:
- CB2.- Comprensión y dominio de los conceptos básicos sobre las leyes generales de la Óptica y su aplicación para la resolución de problemas propios de la Ingeniería Química así como de la Química en General.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

Al finalizar la asignatura el alumno deberá:

- Ser capaz de caracterizar, analizar y elegir las diferentes fuentes de luz.
- Conocer el fundamento de las fuentes luminosas coherentes (Láseres) y sui utilización en los procesos químicos.
- Ser capaz de caracterizar, analizar y elegir los diferentes detectores de luz.
- Conocer el fundamento de los instrumentos ópticos fundamentales así como su correcta puesta a punto para utilización en Ingeniería Química.
- Medir adecuadamente índices de refracción de sustancias utilizadas en Ingeniería Química.
- Ser capaz de analizar y producir distintos tipos de luz polarizada para su utilización en procesos químicos.
- Conocer los principales conceptos de la Radiometría, la Fotometría y la Colorimetría.
- Ser capaz de realizar medidas instrumentales de color y su análisis crítico.
- Estar capacitado para la aplicación de la colorimetría a la resolución de problemas de Ingeniería Química.
- Conocer el fundamento y la utilización de las técnicas refractométricas, polarimétricas, interferométricas y difraccionales que se utilizan habitualmente en Ingeniería Química.

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

- Tema 1. Fuentes y detectores de luz. Luces coherentes: Láseres.
- Tema 2. Instrumentos ópticos fundamentales.
- Tema 3. Refractometría.
- Tema 4. Polarización.
- Tema 5. Interferencias.
- Tema 6. Difracción.
- Tema 7. Radiometría y fotometría.
- Tema 8. Fundamentos de colorimetría.

TEMARIO PRÁCTICO:

Seminarios/Talleres

• Fluorescencia y Fosforescencia

- Fotoelasticidad
- Espectroscopía por transformada de Fourier

Prácticas de Laboratorio

- 1. Medida de índices de refracción.
- 2. Obtención de distintos tipos de luz polarizada.
- 3. Análisis de vibraciones luminosas.
- 4. Interferómetros. Sus aplicaciones.
- 5. Experiencias de difracción. Sus aplicaciones.
- 6. Manejo de Fotómetros y espectrofotómetros.
- 7. Manejo de colorímetros.
- 8. Técnicas para el análisis de las deficiencias en visión del color.
- 9. Colorímetros especiales.
- 10. Medidas espectroradiométricas.
- 11. Medidas espectrofotométricas.
- 12. Colorímetros triestímulo.
- 13. Medida de diferencias de color.
- 14. Formulación de colorantes.
- 15. Medidas de índices de blancura.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- Douglas A. Skoog, F. James Holler, Timothy A. Nieman, *Principios de Análisis Instrumental*, McGraw-Hill, 2000.
- Eugene D. Olsen, *Métodos ópticos de análisis*, Ed. Reverté, 1986.
- Eugene Hecht, *Óptica*, Addison Wesley, 2000.
- Francis A. Jenkins, Harvey E. White, Fundamentals of Optics, McGraw-Hill, 1981.
- Javier Romero Mora, José A. García García, Antonio García y Beltrán, *Curso introductorio a la Óptica Fisiológica*, Ed. Comares, 1996.
- Justiniano Casas, Óptica, Librería Pons, 1994.
- * G. Wyszecki, W.S. Stiles. Color Science. 2nd Edition. John Wiley & Sons Inc, 2000.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Enrique Hita Villaverde y colab., El láser y sus aplicaciones, Universidad de Granada, ICE, 1983.
- Enrique Hita Villaverde y colab., *Láser. Fundamentos y experiencias didácticas*, Universidad de Granada, ICE, 1988.
- * CIE 15:2004. Colorimetry (Technical Report). 3rd Edition. CIE Central Bureau, 2004. (Replaces CIE Pub. 15.2,

1986).

- * R.S. Berns. Billmeyer and Saltzman's Principles of Color Technology. 3rd Edition. John Wiley & Sons Inc., 2000.
- * J. Schanda. Colorimetry. Understanding the CIE System. Wiley, 2007.
- * R.D. Lozano. El color y su medición. Ed. Americalee, 1978.
- * R.W.G. Hunt. The reproduction of colour. 6th Edition. John Wiley & Sons Inc., 2004.
- * R. McDonald. Colour physics for industry. Society of Dyers & Colourists, 1997.

•

ENLACES RECOMENDADOS

Cumplimentar con el texto correspondiente en cada caso

METODOLOGÍA DOCENTE

Para el desarrollo del proceso de enseñanza y aprendizaje se llevarán a cabo distintas acciones formativas que permitan al alumnado adquirir las competencias programadas, a saber:

- CLASES TEÓRICAS, a través de las cuales se pretende que los alumnos desarrollen fundamentalmente competencias conceptuales que se consideran de importancia para motivar a alumno en la reflexión posibilitándole el descubrimiento de la relación entre diversos conceptos y formándole una mentalidad crítica.
- CLASES PRÁCTICAS, cuyo propósito es desarrollar en el alumno las competencias cognitivas y procedimentales de la materia.
- TUTORÍAS, a través de las cuales se orienta hacia el trabajo tanto autónomo como en grupo profundizándose en diferentes aspectos de la materia y orientándosele hacia la formación académica integral.
- SEMINARIOS, tanto en grupos como individuales y que tenderán hacia el desarrollo de las competencias genéricas y actitudinales. Con ellos se pretende que el proceso de enseñanza/aprendizaje sea activo haciendo al alumno protagonista de su propio proceso de aprendizaje.

•

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

• La valoración del nivel de adquisición por parte del alumnado de las competencias anteriormente señaladas se considerará ESENCIALMENTE CONTINUA.

PROCEDIMIENTO Y CRITERIOS PARA LA EVALUACIÓN:

- EXÁMENES ESCRITOS:
- ANÁLISIS DE CONTENIDO EN LOS TRABAJOS INDIVIDUALES Y GRUPALES realizados por los alumnos en relación el seguimiento de las clases de teoría (resúmenes por temas), clases prácticas (informes presentados sobre la realización y resultados obtenidos), seminarios (presentaciones individuales o grupales sobre temas avanzados) y tutorías (orientación a la investigación aplicada).
- OTROS PROCEDIMIENTOS, para evaluar la participación y actividad del alumno, entre otras : listas de control, escalas de cotejo, etc.
 - -Todo lo relativo a la evaluación se regirá por la normativa de Planificación Docente y Organización de Exámenes vigente en la UGR.
 - -El sistema de calificación empleado será el establecido que establece el sistema europeo de créditos y el sistema de calificaciones de carácter oficial y validez en todo el territorio nacional.
- La calificación global de la **convocatoria ordinaria** responderá a la puntuación ponderada de los diferentes

aspectos que integran el sistema de evaluación, y así:

- -Exámenes escritos de seguimiento: 50 %.
- -Informes sobre prácticas de laboratorio y memorias de realización: 25 %.
- -Resolución de ejercicios y problemas propuestos: 10 %.
- -Asistencia a clase: 15%.

Para superar la asignatura será necesario tener como mínimo una calificación, normalizada sobre base 10, de 4 puntos en los dos primeros apartados.

- La calificación global de la **convocatoria extraordinaria** responderá a la puntuación obtenida en el ejercicio teórico-práctico con una calificación máxima de 10 puntos:
 - Máximo parte teórica: 5 puntos
 - Máximo parte práctica (problemas y laboratorio: 5 puntos).

DESCRIPCIÓN DE LAS PRUEBAS QUE FORMARÁN PARTE DE LA EVALUACIÓN ÚNICA FINAL ESTABLECIDA EN LA "NORMATIVA DE EVALUACIÓN Y DE CALIFICACIÓN DE LOS ESTUDIANTES DE LA UNIVERSIDAD DE GRANADA"

El procedimiento sobre Evaluación Única Final, caso de ser concedido por el Departamento, se estructurará sobre la base de realizar:

- Un examen escrito que constará:
 - 1.- Preguntas teóricas tipo cuestión sobre los contenidos del programa.
 - 2.-Realización de problemas numéricos sobre los mismos contenidos.

Ponderación: 50%.

- Un examen práctico que consistirá:
 - 1.- Realización experimental en el laboratorio de una de las prácticas del programa propuesto.
 - 2.- Presentación de un informe detallado y crítico de los resultados obtenidos.

Ponderación: 50%.

 -La calificación global en este caso se obtendrá sobre la base de haber superado ambas partes con una calificación mínima normalizada a 10 de 5 puntos

INFORMACIÓN ADICIONAL

Cumplimentar con el texto correspondiente en cada caso

