GUIA DOCENTE DE LA ASIGNATURA ÓPTICA FÍSICA II

Curso 2017-2018

 $\hbox{(Fecha \'ultima actualizaci\'on: }13/06/2017) \\ \hbox{(Fecha de aprobaci\'on en Consejo de Departamento: }19/06/2017)}$

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
ÓPTICA	ÓPTICA FÍSICA - II	3°	2°	6	Obligatoria
PROFESOR(ES)			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)		
			Departamento de	e Óptica. Edificio Mecer	as, 1ª Planta.
			Prof. José Antonio Díaz Navas: Despacho nº:136, e-mail: jadiaz@ugr.es ; Tfno: 958246367		
 Prof. Dr. José Antonio Díaz Navas: Teoría y problemas Grupo B 			Prof. Ana Carrasco Sanz: Despacho nº: 140, email: acarrasco@ugr.es ; Tfno: 958246365		
 Prof. Dra. Ana Carrasco Sanz: Teoría y problemas Grupo A y B. Laboratorio. 			Prof. Antonio García y Beltrán: Despacho nº 138, e-mail: <u>agarciab@ugr.es</u> ; Tfno: 958241911		
Prof.Dr. Antonio García y Beltrán: Laboratorio			ENLACE A LA PÁGINA WEB DONDE PUEDAN CONSULTARSE LOS HORARIOS DE TUTORÍAS		
			http://optica.ugr.e tos/*/docentes	es/static/InformacionAca	idemicaDepartamen
GRADO EN EL QUE SE IMPARTE			OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR		
Grado en Óptica y Optometría por la Universidad de Granada.			Grado en Física por la Universidad de Granada. Grado en Ingeniería de Tecnologías de Telecomunicación por la Universidad de Granada.		
PRERREQUISITOS Y/O R	RECOMENDACIONES				
Tener cursadas las asigna Tener conocimientos adec					
FísicaÓptica GeométrioMatemáticas	са				

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Difracción. Interacción Luz-materia, Láser, Técnicas de registro de imágenes (2D y 3D), Procesos de formación de imágenes, Óptica de Fourier, Lentes Difractivas, Sensores Ópticos.

COMPETENCIAS GENERALES Y ESPECÍFICAS

COMPETENCIAS GENERALES:

- Conocer la propagación de la luz en medios isótropos, la interacción luz-materia, las interferencias luminosas, los fenómenos de difracción, las propiedades de superficies monocapas y multicapas y los principios del láser y sus aplicaciones.
- Conocer los principios, la descripción y características de los instrumentos ópticos fundamentales, así como de los instrumentos que se utilizan en la práctica optométrica y oftalmológica.
- Conocer y calcular los parámetros geométricos, ópticos y físicos más relevantes que caracterizan todo tipo de lente oftálmica utilizada en prescripciones optométricas y saber relacionarlos con las propiedades que intervienen en el proceso de adaptación.
- Conocer las propiedades físicas y químicas de los materiales utilizados en la óptica y la optometría.
- Conocer los procesos de selección, fabricación y diseño de las lentes.
- Ser capaz de manejar las técnicas de centrado, adaptación, montaje y manipulación de todo tipo de lentes, de una prescripción optométrica, ayuda visual y gafa de protección.
- Conocer y manejar las técnicas para el análisis, medida, corrección y control de los efectos de los sistemas ópticos compensadores sobre el sistema visual, con el fin de optimizar el diseño y la adaptación de los mismos.
- Capacitar para el cálculo de los parámetros geométricos de sistemas de compensación visual específicos: baja visión, lentes intraoculares, lentes de contacto y lentes oftálmicas.
- Conocer las aberraciones de los sistemas ópticos.
- Conocer los fundamentos y leyes radiométricas y fotométricas.
- Conocer los parámetros y los modelos oculares.
- Comprender los factores que limitan la calidad de la imagen retiniana.
- Conocer los aspectos espaciales y temporales de la visión.
- Ser capaz de realizar pruebas psicofísicas para determinar los niveles de percepción visual.
- Conocer el sistema sanitario español y los aspectos básicos relacionados con la gestión de los servicios de salud, fundamentalmente los que estén relacionados con la atención y rehabilitación de la salud.
- Adquirir habilidades de trabajo en equipo como unidad en la que se estructuran de forma uni o multidisciplinar e interdisciplinar los profesionales y demás personal relacionados con la salud visual.
- Adquirir la capacidad para ejercer la profesión con respeto a la autonomía del paciente, a sus creencias, cultura, determinantes genéticos, demográficos y socioeconómicos, aplicando los principios de justicia social y comprendiendo las implicaciones éticas en un contexto mundial en transformación.

COMPETENCIAS ESPECÍFICAS:

- Conocer los fenómenos de difracción, la formación de imágenes según la teoría difraccional, los fundamentos y aplicaciones de la holografía.
- Conocer los principios del láser y sus aplicaciones, y los sensores ópticos.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

- Completar los conceptos básicos de la disciplina Óptica.
- Fundamentar los fenómenos de difracción, la interacción Luz-materia, la emisión láser, los fundamentos de la holografía, la óptica de Fourier y las lentes difractivas, y los fundamentos de los sensores ópticos.
- Potenciar la capacidad analítica, deductiva y de aplicación.
- Profundizar en los aspectos teóricos de la asignatura en el laboratorio.
- Transmitir el avance de la disciplina y sus aplicaciones

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

- Tema 1. Introducción a la Óptica de Fourier
- Tema 2. Teoría escalar de la difracción.
- Tema 3. Difracción de Fraunhoffer.
- Tema 4. Teoría difraccional y procesado óptico de la imagen.
- Tema 5. Fundamentos y aplicaciones de la holografía.
- Tema 6. Teoría clásica de la interacción luz-materia.
- Tema 7. Introducción a la óptica cuántica.
- Tema 8. Fundamentos y aplicaciones de la emisión láser.

TEMARIO PRÁCTICO:

- Seminarios y clases de problemas: resolución de problemas relaciones con el temario teórico de la asignatura
- Prácticas de laboratorio
 - Práctica 1. Estudio de la red de difracción.
 - Práctica 2. Espectroscopía.
 - Práctica 3. Experiencias con láser
 - Práctica 4. Efecto Fotoeléctrico
 - Práctica 5. Radiación del cuerpo negro

Las prácticas se realizarán durante el período comprendido entre la semana 10 y 14 del semestre, en el laboratorio de Óptica Física (Lab.10) situado en la planta baja del Edificio Mecenas.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- Ondas de Luz, José A. Díaz y José M. Medina, Editorial Copicentro S.L. (2ª Edición), 2013
- *Óptica*, J. Casas, Librería Pons, 1994.
- Optics, E. Hecht, Addison-Wesley, 1999.
- Introducción a la teoría difraccional de la formación de imágenes. J.L. Nieves Gómez, J.R. Jiménez Cuesta y J. Hernández Andrés. Universidad de Granada. 2002.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Introduction to Classical and Modern Optics, J.R. Meyer-Arendt, Prentice-Hall, 1993.
- Introduction to Optics, S.J. Pedrotti y L. Pedrotti, Prentice-Hall, 1993.
- Fundamental of Optics, F.A Jenkins y H.F. White, McGraw-Hill, 1982.
- Principles of Optics, M. Born y E. Wolf, Cambridge, 1999.
- Physical Optics, S.A. Akhmanov y S.U. Nikitin, Clarendon, 1997.
- Physical Optics, C.H. Bennet, Cambridge, 2008.
- Optics, M.V. Klein, John Wiley & Sons, 1970.
- Introduction to Fourier Optics, J.W. Goodman, McGraw-Hill, 1990.
- Basic of Holography. P.Hariharan. Cambridge University Press. 2002.
- The light fantastic: A modern Introduction to Classical and Quantum Optics. I. Kenyon. Oxford University Press. 2008.
- *Óptica Avanzada*, M.L. Calvo (ed.), Ariel Ciencia, 2002.
- Introduction to Laser Technology, B.Hitz, J.J. Ewing y J.Hetch, Wiley, 2012.
- Optical Holography. R.J. Collier, C.B. Burckhardt y L.H. Lin. Academic Press. 1971.
- Holography for the new millennium. J, Cudman, H.J. Caufield y J. Riccobono. 2002.
- Introduction to Quantum Mechanics. A.C. Phillips. Wiley. 2003.

ENLACES RECOMENDADOS

http://www.ugr.es/local/laboptic

http://www.ub.es/javaoptics

http://sedo.optica.csic.es/ensenanza/CEO.htm

http://spie.org/x32276.xml?WT.mc_id=KOPTIPEDIAAE

http://library.thinkquest.org/C003776/espanol/fun/iava.htm

http://webtop.msstate.edu/index.html

METODOLOGÍA DOCENTE

Para el desarrollo del proceso de enseñanza y aprendizaje se llevarán a cabo distintas acciones formativas que permitirán al alumnado adquirir las competencias programadas:

- <u>Clases teóricas</u>, a través de las cuales se asegura que el alumnado desarrollará fundamentalmente competencias conceptuales, de gran importancia para motivar al alumnado a la reflexión, facilitándole el descubrimiento de las relaciones entre diversos conceptos y formarle una mentalidad crítica.
- <u>Clases prácticas</u>, cuyo propósito es desarrollar en el alumnado las competencias cognitivas y procedimentales de la materia.
- <u>Tutorías</u>, a través de las cuales se orientar el trabajo autónomo y grupal del alumnado, se profundiza en distintos aspectos de la materia y se orienta la formación académica-integral del estudiante.
- Seminarios, trabajos en grupo y trabajo individual del alumnado, revertirán en el desarrollo de competencias genéricas y actitudes que impregnan todo el proceso de enseñanza aprendizaje.

De las diferentes acciones formativas citadas, las actividades presenciales (clases teóricas y prácticas, tutorías, seminarios) no podrán superar el 40% de la dedicación del alumno.

El proceso de enseñanza y aprendizaje será un proceso activo y significativo. Los debates suscitados en clases, en seminarios y trabajos en grupo, permitirá al alumnado ser activo y protagonista de su propio proceso de aprendizaje. La diversidad de materias deberá desarrollar una visión multidisciplinar y dotarles de competencias cognitivas e instrumentales.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Página 4

La valoración del nivel de adquisición por parte de los estudiantes de las competencias conceptuales, procedimentales y actitudinales, anteriormente señaladas, será continua.

Procedimientos para la evaluación:

- Examen oral/escrito.
- Análisis de contenido de los trabajos individuales y en grupo realizados en las clases prácticas, en los seminarios y en las tutorías académicas.
- o Otros procedimientos para evaluar la participación del alumno en las diferentes actividades planificadas: listas de control, escalas de cotejo,...

Todo lo relativo a la evaluación se regirá por la "Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada" según el texto consolidado y aprobado por Acuerdo del Consejo de Gobierno en sesión de 10 de febrero de 2012, BOUGR núm. 56, de 8 de marzo de 2012, y modificada por Acuerdo del Consejo de Gobierno en sesión de 26 de octubre de 2016, BOUGR núm. 112, de 9 de noviembre de 2016.

El sistema de calificación empleado será el establecido en el artículo 5 del Real Decreto 1125/2003, de 5 de septiembre, por el que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y validez en todo el territorio nacional.

En el sistema de *evaluación continua*, la calificación final responderá a la puntuación ponderada de los diferentes aspectos y actividades que integran el sistema de evaluación según las contribuciones a la calificación máxima final que se especifican a continuación. En esta asignatura la ponderación se realizará siempre y cuando *el alumno apruebe de forma independiente las prácticas realizadas y obtenga una calificación mínima de 3,5 sobre 10 puntos en el examen de teoría, problemas y prácticas*, y responderá a los siguientes repartos:

- a. Examen escrito constituido por cuestiones teóricas y de aplicación y ejercicios de problemas: 60% de la calificación máxima final.
- b. Examen, y realización de prácticas de laboratorio con presentación obligatoria de la memoria de resultados: 25% de la calificación máxima final. El alumno no podrá ausentarse de las sesiones prácticas programadas, excepto por causas excepcionales sobrevenidas y justificadas (motivos laborales, estado de salud, discapacidad, programas de movilidad, representación o cualquier otra circunstancia análoga).
- c. Participación y asistencia en las clases de resolución de problemas y/o seminarios: 15% de la calificación máxima final.
- d. Podrá contribuir adicionalmente a la calificación final la realización de trabajos y pruebas cortas, opcionales por parte del alumno y anunciadas previamente, que se realicen a lo largo del curso para motivar el seguimiento de la asignatura y detectar posibles dificultades en la comprensión de algún tema concreto) hasta un 10% de la calificación máxima final.

En el caso de que el alumno no aprobase de forma independiente las prácticas, el alumno no superará la asignatura.

Las ponderaciones establecidas en ambas opciones de evaluación, serán las mismas tanto en la convocatoria ordinaria, como extraordinaria de evaluación.

Si el alumno optase por el sistema de *evaluación única*, al que hace referencia la "Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada" de 9 de noviembre de 2016, y se le concediera dicha modalidad de evaluación, la calificación final responderá a la puntuación obtenida en las dos partes de la que constará el examen único: un parte correspondiente a cuestiones teóricas y de aplicación y ejercicios de problemas, con una ponderación del 70% sobre la calificación máxima final (los contenidos de esta prueba no tienen porqué coincidir con los de la prueba final programada en el caso de evaluación continua) y otra parte correspondiente a las prácticas de laboratorio, con una ponderación del 30%. En el caso de evaluación única final, la prueba sobre prácticas consistirá en la realización de una de las prácticas que forman parte del temario práctico, la presentación de una memoria de los resultados y la respuesta correcta a tres cuestiones sobre la práctica realizada. También se aplicará el criterio, en este caso, de que el alumno *no superará la asignatura si no supera de forma independiente la parte correspondiente a las prácticas*.

INFORMACIÓN ADICIONAL	